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The three-dimensional problem of steady convective diffusion to surfaces of 
solid particles in a laminar stream of viscous incompressible fluid is analyzed 

by the method of joining asymptotic expansions (in high P&let numbers). 
The stream velocity field is assumed known from the solution of the related 

hydrodynamic problem, A similar analysis was carried out in [l , 21 in the’ 
case of axisymmetric particles located along the stream axis. 

It is shown that the. stress contains arrays of particles which are free of diffusion ef- 
fects between each other, and in which the concentration distribution and the total dif- 

fusion flux to a particle are determined by diffusion to particles upstream of such arrays. 

Formulas for concentration distribution and total diffusion flux on the surface of each 
particle are obtained for the case when the distance between particles in the array is 

considerably smaller than aP’” ( P is the P&let number and 4 is a characteristic 
dimension of particles). In arrays with periodic flow field structure the total diffusion 

flux on a particle is 

Ik = 11 [k’” - (k - i)‘“] 

where 11 is the total flux on the first particle and k is the ordinal number of a part - 

icle in the array, 

A qualitative analysis of the dependence of mass exchange between solid phase and 
fluid in concentrated disperse systems on the Reynolds number is carried out, and the 
plane problem of diffusion to an array of cylinders is considered. 

1. Statement of the problem. We consider the three-dimensional prob- 
lem of convective diffusion at the surface of solid particles in a laminar stream of a 

viscous incompressible fluid, and assume that a unique normal can be drawn at any point 
of the surface of each particle and that there exists a region in which such normals do 

not intersect. 
The stagnation point of the particle surface (i. e. the point approached by a stream- 

line) in whose vicinity the normal velocity component is directed toward (away from) 
the surface is called the flow -on (flow-off) point, and the streamline connected to 

that point, the flow-on (flow-off) trajectory. We shall call the flow-on and flow - off 
trajectories the carrying lines. The stagnation points may be isolated or form stagnation 
lines on the particle surface. 

For the time being we assume that the surface of each particle has only two iso - 
lated stagnation points. By the law of mass conservation one of these is the flow-on and 
the other the flow-off point. The set of particles and of carrying lines emerging from 
these is called the array, when any points of such array can be connected by a continu- 

ous curve which passes over particle surfaces and carrying lines (Fig. 1). Particles are 
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consecutively numbered beginning from the extreme particle first reached by a flow-on 
trajectory coming from infinity. 

We assume that fluid flow field was determined by solving the related hydrodyna - 

mic problem and introduce for each array a local orthogonal system 

of coordinates 5, 7, h. We must indicate the direction of unit vectors at any point 
M lying close to the array and, also, the manner of reading curvilinear coordinates. 

Point M’ of the array which is closest to point kr determines the direction of 

the unit vector eg and the segment 1 MM’ 1 determines the dimensionless coor - 
dinate E (reduced with respect to the characteristic dimension of a particle, which is 

assumed common for the whole array ) . Since the carrying Lines originate at the part - 
icle surface, the introduced coordinate surface E = const are not smooth. Because of this 
we provide means for local smoothing. 

Let us consider the simplest case when the carrying line reaching the particle is 
normal to its surface. The coordinate surfaces E = c.onst in the stagnation point 
neighborhood with the .X -axis directed along the carrying Line and the Y -axis in the 
plane tangent to the particle surface at that point) are shown in Fig. 2. For a fixed t 
of curve 

1~ - E + R (812” i- [y - F, - R (E)12” = Rzn (E) 

2 =G E + R (E), Y < E + R (E) 

it is possible to smooth out the coordinate surfaces $ = const to any required smooth- 
ness (depending on n ). Hence we assume henceforth that these coordinate surfaces 
are smoothed out by a similar procedure. 

The direction of unit vector e, is determined by the projection of the fluid vel- 

ocity vector at point M on the plane normal to ee and the unit vector ek is chosen 
so that the system of vectors et, en, eh is an orthogonal right-hand coordinate tri- 
hedral . We fix the coordinate plane s where the second curvilinear coordinante (Q has 
a constant value, at point N which lies on the flow-on trajectory of the first particle. 
In the plane tangent to that surface at point IV we arbitrarily fix vector e,. 
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Fig. 2 

nE = W (i), 

U& = W (I), 

The direction of the carrying line and 
of that vector determine the coordinate 
surface h = 0 which will be used 

as the reference plane. The quantity 

A is determined by the angle between e, 

and the vector normal to the coordinate 
surface h = const at point N 
(0 < h < Bn). The coordinate q is 
the length of arc measured from point iv 
along the line of intersection between sur- 

face h = 0 and the surface of the array 

(E = 0) (Fig.1). 
In that system of coordinates the fluid 

velocity vector is at every point of the 
form u = {ug, un, 0} , and near the 
array (with E + 0 > has the following 
properties : 

% = w (I) (1.1) 

uq = 0 (1) 
(1.2) 

The first of these properties holds near the particle surface and follows from the 

hydrodynamic boundary condition of sticking, while the second obtains close to carrying 
lines, since the directional vector of these trajectories coincides with the direction of 
the fluid velocity vector. These conditions do not hold in proximity of stagnation points. 

The components of the metric tensor for E --f 0) have the following properties : 

a1 = 0 (1), g22 = 0 (i), g33 = 0 (1) 
(1.3) 

g11 = 0 (11, g22 = 0 (11, g,, = E2 0 (1) (1.4) 

of which (1.3 ) obtains in the vicinity of particle surfaces and (1.4 ) in that of carrying 
lines. 

Below we assume that the related flow field is quasi-stationary and that in the con- 
sidered time interval particles belong to the samearray (this is so when the system of 
particles is stationary (fixed ) and the fluid stream is steady ) . 

Taking the above into consideration, neglecting the derivatives with respect to 
time, and assuming total absorption of the diffusing substance on the surface of particles 
and constant concentration away from the latter, for the steady convective diffusion we 

obtain the dimensionless equation 
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CI%_t),qk-<‘hqk+=O, C~~_-+l (k=l.2, ...I n) 

L? = &lg22gm e-2 =P=aU/D 

where P is the P&let number, a is the characteristic dimension of particles, U 
is the characteristic velocity of the oncoming stream, D is the diffusion coefficient, 
and qk- (qk+) is the coordinate Of point Of flow-on (flow-off) Of thek*thparticle, 

2. Diffwfon to a rfngle partfcle. The equation of continuity for an 
incompressible fluid is of the form 

(V -u)=-+[$(q/q+ $-(q/g=0 (2s1) 

We determine function CD (E, q, h) as the solution of equation 

The equation of continuity is then automatically satisfied. System(2.2) has a uni- 
que solution, since the integrability condition is satisfied by virtue of (2.1) [ 3 1. Function 

0 vanishes at the array surface. 

For a homogeneous and rectilinear stream at infinity the surfaces @ G, rl, A) = 
const have a simple physical meaning. The flow-on trajectory upstream of the 

first particle is in that case a straight line. Separated elements of fluid lying at equal 
distances from that line away from the particle provide a good representation of surface 

Q = const by following these in their flow past the array. When the flow field is 
axially symmetric, CD represents the conventional stream function. 

It can be shown that surface @ (E, R, q) = const is formed by streamlines, and 
the intersection of surfaces @ = const and h = const separated out the streamline. 

With allowance for (2.2 ) problem (1.5 ) assumeS the form 

c Is-o, l~-sml~ + = 0, c If- -+ 1 (k = 1, 2, . . ., n) 

Properties (1.1) - (1.4 ) imply that function CD in proximity of the array (E + 0) 
can be represented in the form 

@ (Et rl, A) = E2f (% A) (2.4) 

f (q7 V ItlMlk_ + ak- @‘) (q - qk-j2 

f (% ‘) blk+ * ak+ @) (q - qk+j2 

In what follows we assume that the P&let number is high, i. e. E (( 1. 
Asymptotic analysis of Eq. (2.3 ) with allowance for (2.4 ) shows that when e < 1 

it is possible to separate in the neighborhood of a particle several regions with different 
mass transfer mechanisms, as schematically shown in Fig. 3. These regions are the ex- 
ternal region e, the region b of the leading critical point, the diffusive boundary 
layer d , and the region of the diffusion wake W ‘which itself consists of subregions 

W(k) (k = 1, 2, 3, 4). 
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In each of these regions Eq. (2.1) is replaced by an approximate one by separating the 
principal terms of expansion in the small parameter 8. 

Fig. 3 

The correspondence of solutions in individual regions is established by asymptotic joining, 
In the external region 

e = (0 (8) < E, 0 (8) < 1 q - qk+ 1) o tE) < 1 q - qk- 1) 

(here and in what follows the inequalities in braces indicate the order of characteristic 
dimensions of the considered region, where the interval 0 < h < 2n of variation of 
parameter h is omitted ) the right-hand side of Eq. (2.3 ) is immaterial. Hence the 
concentration of the dissolved component in e is constant and equal unity. 

Mass exchange in the boundary layer 

d, = {a < 0 (e2), 0 (8) < 11 - Ill-7 0 (4 < rlr+ - rl) 

is characterized by that the diffusion transfer of substance along the surface can be neg- 
lected since it is small in comparison with the transfer along the normal to it, We intro- 
duce the variables 5 = e-10/1, Tl, h and from (2.3 ) with allowance for (2.4 ) for 
the determination of concentration in 4 obtain the following problem : 

L (L 5) cid’ =o, L=-&pG 
(2.5) 

cl”” It*=0 = 1, cid’ 16X0 = 0, cld’ Ig_ -+ 1 

For which the initial condition relates to the condition of flow-on at the stagnation 
point. The solution of problem (2.5 ) is of the form 

Cl(d) (5, tJ = r-l (l/a) y (l/s, 53 / 9tJ (2.6) 

where y (l/s, z) is an incomplete gamma function. 
The local and total diffusion fluxes at the particle surface are determined by formulas 

j(q, q = 13% f"'bl. h) 3% 

v-i7 ae 
7 g11 O = [gll]+o (2.7) 

&=O = 8 v/gllOr p/Q) qqq;q 
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Analysis of the rejected and retained terms of Eq. (2.3 ) shows that solution (2.6 1 is 

invalid when q --t vi+. Hence it is necessary to consider here, as well as in the case 
of axisymmetric flow around the particle [ 11, the diffusion wake 

w, = {Q < 0 (ES), ri+ - e < rl) 
which consists of four subregions Wi@) (Ic = 1, 2, 3, 4)) as shown in Fig.3. 

In the convective boundary layer region 

W,(i) = {@ < 0 (as), 0 (8) < 7 - ql+} 

the right-hand side of Eq. (1.5 ) is immaterial, hence the concentration depends here 
only on 0 and ?,, , and is constant and equal to that at exit from the diffusion 
boundary layer. 

The explicit expression for concentration in W,(i) is determined by joining with 
solution (2.6) and is of the form 

Cl(l) (5, A) = c,(d) (5, q, h)q-q*+ = r-1 (l/3) y (l/a, g,” / 9t,O (A)) (2.8) 

ho 04 = t, (q, vq=q,+ 
Region of the trailing stagnation point IV,(s) = (a < 0 (E4), 1 q - ‘%+ 1 < 0 (8)) 

where both, the normal and the tangential transfer are significant, the inner region of 
the wake II-i(?) = (0 < 0 (E3), 0 (E) < q - ql+ < 0 (e-l)) , and the mixing region 

~~(4) = (@ < 0 (S), 0 (E-I) < n - Q+} where only the normal transfer is import- 
ant will not be considered. We only indicate the order (with respect to a ) of con - 

centration in these regions: c1c2) - J/E, c1t3) - E, and c114) - 1. A detailed an- 

alysis of these regions in an axisymmetric flow appears in [ 1, 4- 6 1. The more complex 
analysis of a three-dimensional diffusion boundary layer was carried out in [ 7 1, where 

a transformation was obtained for reducing the equation of a steady convective diffusion, 
expressed in terms of boundary layer coordinates, to an equation with separable variables. 

3. Diffusion to an arbitrary particle of the array. It isassumed 
that the distance between particles satisfies the condition qk_ti - qr+ < 0 (e-i). 

Regions of the trailing IVz(s) = {@ ( 0 (~4)~ 1 q - q2+ ( ( 0 (E)} and leading 
b, = (0 < 0 (.s4), 1 q - +- 1 < 0 (&)) stagnation points and, also, the region 

d, = {CD ( 0 (c2), 0 (E) < q - q2-, 0 (E) < ql+ - Y> of the diffusion 
boundary layer can be separated on the surface of the second particle. Contributions of 
regions IY,(3) and h, to the total diffusion flux are insignificant in comparison 
with the contribution of d,. Hence for the determination of the principal term of the 
expansion in powers of E of the total diffusion flux on the second particle , it is suf - 
ficient to obtain the solution for the diffusion boundary layer d,. 

The equations and boundary conditions for concentration in the diffusion boundary 
layer of the second particle are of the form 

L (t2, 5) c,(“) = 0, t, (q, 3L) = t (q, q2-, h) 

(d) 
c‘2 I E-0, llz-<qsTl*+ = 0, Cid) /c_m 3 1 (5 = mYZ) 

(3.1) 
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where z and L are defined by (2.5 ) . 

The conditions of flow-on for the second particle boundary layer are obtained by 
joining with solutions in regions w,(l) and w*z) of the first particle. Using 
the solution of Ecb (3.1) with arbitrary initial conditions it is possible to show that the 
concentration distribution in the inner region of the first particle wake does not affect 
the leading term of expansion in powers of E of solution in d,. Hence the flow-on 
conditions for the second particle are determined by formula (2.8 ), 

It can be shown by a reasoning similar to that used in the case of the first particle 
that Eq. (3.1) is not sufficient for determining the concentration distribution in the 
neighborhood of the second particle stagnation point. Hence it is necessary to consider 
the diffusion wake w.r of the second particle whose convection boundary layer region 

W,(l) = (0 < 0 (et), 0 (a) < q - Q+} determines the flow-on condition for 
the diffusion boundary layer of the third particle, 

The recurrent system of equations that defines the concentration distribution in the 
diffusion boundary layer of any particle is of the form 

where z and L are defined by Eq. (2.5). 
Introduction of the new variable 

t*==*w4 =$Q+t, 
(3.3) 

reduces system (3.2 ) to the single equation 

L V*, 5) c = 0, c It,=O = 1 

c If=@ = 0, CJ+0331 

whose solution is of the form 

(3.4) 

c = r-1 (l/s) y (i/s, c3/ 9t*) (3.5 1 

The local and total diffusion fluxes on the k - th particle are determined by formulas 

jr (q, A) = f”‘h’ ‘) 31’s (qk- < q d qk+) 
(3.6 1 
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We use formulas (3.3 ) and (3.6 ) for investigating the total flux on a particle in 
the array at high numbers k 

k+cw, 2- 3”* II, --f - 
Id7 P/s) 

7 t,o (h) [ 5 tie (h)]‘” dJ. 

0 i=l 

(3.7) 

For an array of periodic structure (any hydrodynamic parameter that defines the 
array satisfies the condition a (q + T, I,) = a (q, h), T = qa- - ql-) from 
formula (3.7) we have 

IF’ =z= I&*l~, I, = II [/?I* - (k - I)‘/,] (3.8 ) 

where 11 is the total diffusion flux on the first particle. 
Let us now consider the flow field which defines, besides isolated stagnation points, 

the critical lines at the particle surfaces. Such lines determine the two-dimensional 
carrying surfaces which may be investigated as in [ 21, where it was shown that in that 
case the diffusion wake consists only of the region of the trailing (flow-off) stagnation 

point and of the mixing region of an over-all dimension 0 (P -‘I*). This indicates 
that when the dimensions of the closed circular region (which develops behind particles 

at Reynolds numbers R cn 10 ) the diffusion interaction in the array is negligible, 
and the total stream of matter to every particle can be determined exclusively by the 

local velocity filed in the proximity of its surface. 

We shall explain this on the example of an array in a flow field of periodic strut - 
ture. We assume that the flow field in the vicinity of a particular particle depends only 
on some parameter o ( e. g., the Reynolds Number), and with increasing 61 behaves 

as follows: for 0 < 0 < or there are only two isolated stagnation points, when 
61~ < 0 there appear downstream of particles closed circulation regions whose dim- 

ensions increase with increasing w, and when 61s < 61 the characteristic dimen - 

sions of the closed circulation region become considerably greater than P -‘I,. 
Let us investigate the dependence of mass transfer in such system on parameter o. 

Formulas (3.8) are valid for the total diffusion flux on the particle when0 < w < q. 
A region of closed circulation appears downstream of particles when o,c o #the 
diffusion wake pattern begins to change, and for os < o it consists only of the 

trailing stagnation point and of the mixing regions. The diffusion interaction between 
particles can then be neglected, and the total diffusion fluxes determined by formula 

1, = I,, Ikk’ = kl 1 

When o1 < o < oa the effect of inter-particle diffusion requires separate in- 
vestigation ; it is, however, possible to assume that formula 

I,@) = II (0) kv(O), V3 < y (co) < 1 (3.2) 

is valid for the over-all diffusion flux throughout the range of parameter o variation. 
Note that all formulas derived in Sects. 2 and 3 are valid for any system of coor - 

dinates (E*, tl *, A*) equivalent to (g, q, h) ( i. e. q = ec*, e, = +, g = 
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eh** &k J i&k* = 0 (I), k = 1,2,3). 

The axisymmetric case. In this case 8 f ~5% = 0 and the coordinate 
system introduced in Sect. 1 in the proximity of particle surface is converted into a 
conventional coordinate system which is often used in the analysis of the hydrodynamic 
boundary layer. 

For the complete diffusion flux formula (3.6 ) is simplified, assuming the form 

We shall now consider an array of spheres of radius 
1 elk <e-r 

x (k) = 0 (1) spaced at 
distance one after the other along the axis of an advancing Stokes 
stream, The radius of the first sphere is taken as the characteristfc dimension of part - 
icles. In a sphedcal system of coordinates fixed at the center of the k -th particle 
the stream function is defined by 

y = % (G - x (kV sin2 ok + 0 (E,-l) + 0 (;pk - x (k))s 
* = min 1, 

k 

Taking into account that in protimity of a sphere h = xa (k) sin 9,, 

formulas (3.10 f and (3.11) for the total diffusion fluxes we obtain 

(3.11) 

using 

(3.12 1 

Setting in (3,12) x (k) = 1 we obtain the results derived in [ 11. 
When x (k) = kv formulas (3.12 ) yield for the diffusion fluxes the expre&ons 

k + 06, Ix(*) -+ (2~ + f)+ k(dyy)) Is 1% (3.13 1 

I, --t 218 (2v + 3)‘;s k@“-1) t 81, (v > - ‘/2) 

Let us determine the law of growth of the radii of spheres x (k) in the array for 
which the diffusion fluxes on each of these are equal, i. e. I, = I,. Using (3.12 ) 
and taMng into account that J$o = krr for the sphere radii we have 

x(k)=f/k’lp-- (k--l)‘/*, x(k-+c+-#~k’f~ (3.14) 

4. The plane case. Let us consider the problem of diffusion to an array of 
cylinders in a laminar stream of visccus incompressible fluid. We assume that the stream 
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function is known from the solution of the related problem of flow past the array and 
that each cylinder has only two stagnation points. The array divides the whole flow 
region into two subregions in which the stream function sign is constant. 

We introduce the coordinates E and q, and use the same numbering of bodies 

and notation as in Sects. 1 and 2. The concentration distribution in the stream is de - 
termined by the solution of Eq. (2.3 ) taking into account that a/ah=0 and 

833 = 1. The stream function in proximity of the array can be represented as 

C + 0, 9 (EY rl) + E”f (r) (%c- < r <rr+) (4.1) 

Fi -to, $ (L rl) + &((rl) (rlr+ -C r < rllr+J 

In what follows we consider, without loss of generality, the region 9 > 0. 
The asymptotic analysis of problem (2.3 > , (4.1) shows that (when a+O) in 

proximity of cylinder surfaces there are four regions with different mass transfer mech- 

anisms [ 2 1. These are : the outer region e, region dk = IE <O(a), rlkl - rl< 0 (a), 
q - rlk- < 0 (a)} of the diffusion boundary layer, region w7h.(3) = {E < 0 (a), 

1 11 - qk+ 1 < 0 (a)) of the trailing stagnation point, and the mixing region ~~(0) = 

($ < 0 (E2), 0 (E) < 9 - ?k+ < 0 @“%* The convective boundary layer and the 
inner region of the diffusion wake are in this case absent, and the over-all length of the 
diffusion wake is of the order of a’/~. Hence when the distance between cylinders is 
considerably greater than p-‘/s, the total diffusion flux to any cylinder is determined 
only by the local flow field near its surface. 

The concentration distribution in the diffusion boundary layer of the k - th cyl- 

inder is determined by the solution of Eq. (2.5) with the initial condition specified by 
the concentration in the diffusion wake of the preceding (k - 1) -st cylinder, For 
the first cylinder we have cl(d) (tl = 0) = 1. 

Direct interaction between the diffusion boundary layers of cylinders occurs when 

‘$ =qk+l--qk+ co (8) , and it is then possible to derive a recurrent system of 

equations similar to (3.2 ) , It is, consequentIy , possible to use formulas (3.5 > and (3.6 ) 
for determining the concentration and local diffusion flux, taking into account that 

1. For the total diffusion flux (to the part of the cylinder adjacent to region 

we obtain 

(4.2) 

In the case of an array of cylinders of periodic structure formulas for the total dif- 
fusion fluxes are determined by formulas (3.8 ) , where I,. is the total diffusion flux to 
the first cylinder. For a bundle of cylinders consisting of arrays of circular cylinders of 
the same radius arranged on a common axis at distance 1 < 0 (e) from each other 

we have 

z1= E-1398 (2nL+ r (S/4) *‘a 

r P/s) ( 1 r” 
f (6) = 52 sin 0 
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where 52 is a constant dependent on the bundle porosity and different ip different 
cellular models (see, e. g. , [ 9,lO ] ) , 

For 0 (8) < I, < 0 (e”q the condition of flow-on on the k -th cylinder is 
determined by the concentration in the mixing region of the (k - 1) -st cylinder. 
Below we assume for simplicity that the singular streamline lies on the axis of symmetry 
of the stream. By the substitution 

Xk = xk (11) = e-1 f h h) A (q) d% 2 = e-yl (2 = 5”) 

l?k+ 

the problem of concentration distribution in the mixing region is reduced to the con - 
ventional equation of thermal conductivity [ 2 ] 

a - _ -g i# 
a2k 

cp = 0, -+- = 0, cp 4-i 
z=0 I Z-=S 

(4.3 1 

with the initial condition determined by the concentration at the boundary of the dif- 
fusion boundary layer dk. 

Using the solution of Eqs. (2.5 ) and (4.3 ) woth arbitrary initial condition, for the 
concentration in the diffusion boundary layer of any of the cylinders we obtain the formula 

cid’ (p, tk) = A (5, t&t& (2, Xi-l), Cf’ = i (2 = 5”) 

Cf’ (2, Xk) = B (2, Xk)*C!id) (p, tk”), Xk” = Xk &+I) 
(4.4) 

0 

24 (5*) a* 
B(z,z)w(z)= j -&exp(- z2~~zn)oh(~)~(~*)dz* 

0 

It can be shown that formulas (4.4) are valid for any distance between cylinders 
in the array 0 < l, < 00. 

5. Discussion of result,. The diffusion wake mixing region 

{@ < 0 (e% Pk = e (11 - %+) = 0 (I)} 

Wk(4) = 

of th ree-dimensional bodies of finite 

dimensions can be analyzed as in [ 11, The concentration in that region levels out to 
the undepleted one (ck(*) 3 1). Hence, if the distance between particles in the array 

is resonably great r)k- - rjk_r+ > 0 (it+), the concentration distribution and the 

diffusion fluxes on the k -th particles are determined exclusively by the local velocity 
field near its surface. 

The analysis in Sections 1 - 3 indicates that when @ >> e2 the concentration 

of the substance dissolved in the stream is virtually the same as in the flow-off stream. 
Consequently, when the distance between arrays is considerable in comparison with 

P-‘/J , the arrays have no effect whatsoever (as regards diffusion) on each other. 
The above analysis is in qualitative agreement with experimental data on heat and 

mass transfer in dispersed systems (see, e. g. , [ 111 ), Sections 3 and 4 show that at low 

Reynolds numbers in concentrated dispersed systems the structure of the singular stream- 
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lines which commence and end at the surface of particles is the determining factor in 
the mass transfer between the solid and the fluid phases. In such cases the stream con- 

tains a large number of arrays in which the internal mass transfer is considerably slowed 
down by the interaction of diffusion wakes and boundary layers of particles belonging 
to an array. For example, the total diffusion flux on particle decreases as k-‘/a when 

k -+ oo ( Ic is the ordinal number of an array particle ) , while the over- all flux on all 
array particles is proportional to k% and considerably smaller than the over- all flux cal- 
culated by the self-similar solution [ 8 ] (with no allowance for the diffusion interaction of 
particles ), which makes it proportional to k. 

This behavior is maintained with increasing Reynolds number until downstream of par- 
ticles there are no closed circulation regions that contain a circular vortex. Diffusion waves 
begin to “blurr ” when the closed circulation region is formed and, when the vortex becomes 
fairly large, their characteristic dimensions are of order P-‘/9 [2] . When the distance 

between particles is considerably greater than P-‘/o, the mass transferbetween the solid 
and fluid phase is additive, i. e. the total diffusion flux on a particle is determined by the 

local flow field near its surface. 

The author thanks Iu. P. Gupalo and Iu. S. Riazantsev for their interest in this work. 
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